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S:immary. — An exact solution for the gravitational field in a static
spherical shell of matter is given. The exact junction conditions in the
case of a thin shell are deduced.

It is known (') that, in the case of a spherical static perfect fluid and for
a line element of the kind

(1) ds®* = ¢®dr® —»*(d02 4 sin26dg?) -+ " di?,

the pressure is a decreasing function of the radius co-ordinate r. It is there-
fore not possible to have a spherical shell of perfect fluid in equilibrium in vac-
uum sinee, in this case, the pressure is to be zero for two different values of 7.
However it is still possible to have a spherical shell of matter in equilibrium
provided we allow for 7T; = T3; in this case, the junction conditions (2) for the
spherical shell with vacuum do not impose conditions on T%; it is however
necessary that we have 77 = 0 for two different values » = a and r=>5 of the
radius co-ordinate. This may be achieved if we have

(2) T: = f(r)(r —a)(r — b},
where f(r) iy a regular nonzero function in the interval a <r<b.

() B. Harrsiox, K. THORNE, M. WakaNo and J. WHEELER: Gravitational Theory
and Gravitational Collapse, Theorem 6 (Chicago, 1965), p. 26. (The theorem deals with
cold catalysed matter but is in fact more general.)

() W. ISRAEL: Proc. Roy. Soc., 248 A, 404 (1958).
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Einstein equations for the static case may be written (3)

o 1 1
(3) ‘—SﬂTi: C’Aw(;‘ +;“z)—r—2,
¢ wdo o o—w
(4) —SJITEZ(’—“O(T_ 4*—# 1 + 2 )’
1 1
(5) 8o = =@ (9— — —) 4= = 8T
= 7 72 72

That is to say three equations relating the five functions 7%, T3, T3, w, 0. It
is therefore possible to consider two of these quantities (or combinations of
them) as arbitrary functions. However, in order to obtain physically meaning-
ful solutions, the mathematically arbitary functions must be restricted some-
how so that the calculated pressures and density satisfy some general physical
conditions (o> Ty, o> T3). In the case the arbitrary functions have New-
tonian defined equivalents, it may be expected that if these functions are phys-
ically acceptable from the Newtonian point of view they will lead to general
relativistic acceptable results (at least for these values of the paramters cor-
responding to weak fields).

We chose for arbitrary functions the radial pressure p,— — T; and the
Newtonian defined gravitational field intensity

r

féiytg?‘z
(6) g=—"—g
From (3) and (5) we deduce
, 8ap.—2g
@ M Ry
(8) = (L4 2gr)

It is to be remarked that eq. (7) and (8) derived here for the static case
are still valid for the time-dependent case since eqs. (3) and (5) have the same
form in the static and in the time-dependent case (for a line element of the
form (1)).

Equations (7) and (8) are, formally, a solution of KEinstein’s equations
including two arbitrary functions p,(r) and g{(r).

We will choose for the expression of ¢ the Newtonian one corresponding
to a homogeneous density

9 o = 3d/(4m) {d = constant)

(®) R. TorMaN: Relativity Thermodynamics and Cosmology (Oxford, 1934), p. 244.
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and obtain for g the expression

d
(10) g(r) =dr— da¥jr: = e (r2— a?)
(a being the internal radius of the shell) and for ¢®

9403 -1
(11) w:@+%L4W).

We see from (10) that g(a) = 0, so that from (7) we obtain that ¢'(a)=0
if we wanf to have p.(a)=0.
We found that relatively simple results could be obtained by taking

k(r—a) .
T= E
g T (¥ and » being constants)

and restricting the values of k and % so that p, is zero for r=25. The re-
sulting solution is

9 3\—1
- (1 —2red + Ji»“*) ,

(12)
€6 — q,r!cam (’LL . T)k(l—a{u) ,
with
) kb(b—a)

(13) u:b-{*lx(b—d)—.—)ﬁ(b‘g 3)
calculations give

3d
14 ==
(14) 4 i’

(r— a)b—7r)[ k(a:— br )

1 e A T eq(k + 1) a?
(15) 8xp u— 1) [aL[L b ab d(k +1)(r24 a*+ ar)],

2da®\ [2k(2ar — au—v?) | k%(r— a)?
)[ rr—u) rr— )t

(16) — 8aT2= j: (1 —2rd+ =

2 drd 4 2da?/r I(rf— a) drd+ )d'a*“*h*2 2kr— a
r 1— 2r2d + 2dadjr  r(r— u) 1— 2r2d +2dad)r T rrr—ul’
We have to impose the restriction ¢® > 0 or

2d
an 1-—T—( i—a’)>0 with a<<r<b,
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this will be satisfied if

l—gg(lﬂ— a®)> 0.
However, from (13) we have

(18) 1— 2701 (b3— ad) — 2d(b*— aa)(b;iu)

kb—a)p

8o that condition (17) is fulfilled if (b —u)/k > 0.

It is convenient to take & < 0 so that we must have also # > b and there-
fore (4 —7)~' will not contribute to infinities in the expression (15) for p, in
the range of r a<<r<Cb.

Let us suppose that

3__ 3
(19) 2_d(éb_a/_) <<1
and that
(20) (b—a)ja < 1.

We may in this case write instead of (13)
(21) uw—b ~ — kj(6db)
and instead of (15)

22)  Sap,~ ,(”,;(‘;)f{,)ﬂ [— 6db3(k + 1)] ~ 364° @; D= ayp—r).

Equation (22) shows that the radial pressure is at most of the order of

(b—a)?

b2 d

and is positive for k< —1.

As for the nonradial pressure as given by (16), there are between the square
brackets three terms containing explicitly the factor (r —a) which are at
most of the order (b—a)dja; as to the two other terms

2k(2ar— au—r2) 2 4rd 1 (2da[r?)

rr—u)®  r1—2r:d+ (2da’/r)’
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we may write them within the approximation (e ~b~7r; r—u~nb—u~
=~ k[6bd)
2k

vy — 194 ~
(23) T~ 1240,

that is to say that T% is of order (b—a)d/b at most. This means that our
exact solution yields pressures as low as desired provided the inequalities (19)
and (20) are satisfied. The solution may be joined smoothly to a Schwarzschild
solution for the exterior and with a Minkowskian solution in the hole accord-

ing to
1 for r<<a,
D2daqd\ —1
(24) e = (1—272d+4ia) for a<<r<<b,
9 b3_ 3)\—1
(1_*617(777* a)) for r>b;
ga(klau) (’M— a)k(l—a/u) fOI' 7,< a’
(24) 60 = qri*en (u — r)ka=er for a<r<b, (g=constant).
qb(}ca/u)(u_ b)k(l—a;u) b3_“ asd
4 _ —{1—02g=—
1= 2d(b— )b d " for r> b,

The ratio of the rate of a clock in the hole to the rate of a clock at infinity is
given by

— =k —ajuw)/2 9 3_ 48] %
(25) (b/a-)*’““”"(—@—t---- b) [1—*“‘1(1’}) “)] :

w—a

In the case (b—a)/b <1 and 2d(b>—a?)/b < 1 the rate of the two clocks
differs approximately by the Schwarzschild factor

[ 2d(b*—a¥)t
e

From the exact solution (24), we can investigate the limiting case of an
infinitly thin shell of radius «. Writing

d(h>—a®)=m
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we have

1 for r<<a,
(26) "=

(L—2mfry? for r > a;

qare (4 — g)Fa—w for r<a,
¢ 1
(26 ) ° = qa(ka/u) (u _ a)k(l—-alu)

1 Sma -(1—2m/r) for r>a.

It is therefore seen that 2° is continuous while ¢” is discontinuous across
the shell.

It has been claimed in a recent study (*) that the metric of a thin shell would
be continuous across the shell; our result shows that, in our system of co-ordi-
nates at least, this is not true; more will be said on this point in a coming paper.

The solution (26) for an infinitely thin shell may be written in & more con-
venient way; if we put

@n qa® (g — @) = 1 —2mja,
‘we obtain
1 for r<<a,
(28) e® =
{(L—2m[r)—! for r>a;
(1-—2m/a) for r <a,
(28") e’ =
(1—2m/r) for r>a.

(1) A. PapraPETROU and A. Hamaoul: Ann. Inst. Henri Poincaré, 6, No. 4 (1967).

RIASSUNTO (%)

Si da la soluzione esatta del campo gravitazionale in uno strato sferico statico di
materia. Si deducono le condizioni di giunzione esatte nel caso di uno strato sottile.

(") Traduzione a cura della Redazione,

Tounoe pemense AT craTHYeckoil cephyeckoit 060/10YKH BelllecTBA B BaKyyMe,

Pesiome (). — IIpuBogurcs ToudOe pellleHWE i I'paBUTALMOHHOIO MHOJSA B CTATH-
Yeckoil ctepuyeckoit 060J09ke BelUecTBA. BHIBOOATCA TOYHBIE YCJIOBHS CLIMBAHHA B
clIy4ae TOHKOM 000JI0YKH.

(*) Iepesedene pedaxyueil.



